publications

publications by categories in reversed chronological order.
* = equal contribution.

2024

  1. Stronger Universal and Transfer Attacks by Suppressing Refusals
    David Huang, Avidan Shah, Alexandre Araujo, David Wagner, and Chawin Sitawarin
    In Neurips Safe Generative AI Workshop 2024, Oct 2024
    Full version is under submission.
  2. MarkMyWords: Analyzing and Evaluating Language Model Watermarks
    Julien Piet, Chawin Sitawarin, Vivian Fang, Norman Mu, and David Wagner
    In Statistical Foundations of Llms and Foundation Models (NeurIPS 2024 Workshop), Oct 2024
  3. StruQ: Defending against Prompt Injection with Structured Queries
    Sizhe Chen, Julien Piet, Chawin Sitawarin, and David Wagner
    In 34th USENIX Security Symposium (USENIX Security 25), Feb 2024
  4. OODRobustBench: A Benchmark and Large-Scale Analysis of Adversarial Robustness under Distribution Shift
    Lin Li, Yifei Wang, Chawin Sitawarin, and Michael W. Spratling
    In Proceedings of the 41st International Conference on Machine Learning, Jul 2024
  5. Vulnerability Detection with Code Language Models: How Far Are We?
    Yangruibo Ding, Yanjun Fu, Omniyyah Ibrahim, Chawin Sitawarin, Xinyun Chen, Basel Alomair, David Wagner, Baishakhi Ray, and Yizheng Chen
    In Proceedings of the IEEE/ACM 47th International Conference on Software Engineering, Mar 2024
  6. Jatmo: Prompt Injection Defense by Task-Specific Finetuning
    Julien Piet*, Maha Alrashed*Chawin Sitawarin, Sizhe Chen, Zeming Wei, Elizabeth Sun, Basel Alomair, and David Wagner
    In Computer Security – ESORICS 2024, Mar 2024
  7. PAL: Proxy-Guided Black-Box Attack on Large Language Models
    Chawin Sitawarin, Norman Mu, David Wagner, and Alexandre Araujo
    Under submission, Feb 2024
  8. PubDef: Defending against Transfer Attacks from Public Models
    Chawin Sitawarin, Jaewon Chang*, David Huang*, Wesson Altoyan, and David Wagner
    In The Twelfth International Conference on Learning Representations, Jan 2024
  9. SPDER: Semiperiodic Damping-Enabled Object Representation
    Kathan Shah, and Chawin Sitawarin
    In The Twelfth International Conference on Learning Representations, Jan 2024

2023

  1. REAP: A Large-Scale Realistic Adversarial Patch Benchmark
    Nabeel Hingun*Chawin Sitawarin*, Jerry Li, and David Wagner
    In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Oct 2023
  2. Preprocessors Matter! Realistic Decision-Based Attacks on Machine Learning Systems
    Chawin Sitawarin, Florian Tramèr, and Nicholas Carlini
    In Proceedings of the 40th International Conference on Machine Learning, Jul 2023
  3. Part-Based Models Improve Adversarial Robustness
    Chawin Sitawarin, Kornrapat Pongmala, Yizheng Chen, Nicholas Carlini, and David Wagner
    In International Conference on Learning Representations, May 2023
  4. Short: Certifiably Robust Perception against Adversarial Patch Attacks: A Survey
    Chong Xiang, Chawin Sitawarin, Tong Wu, and Prateek Mittal
    In 1st Symposium on Vehicle Security and Privacy (VehicleSec), Mar 2023
    Co-located with NDSS 2023

2022

  1. Demystifying the Adversarial Robustness of Random Transformation Defenses
    Chawin Sitawarin, Zachary Golan-Strieb, and David Wagner
    In Proceedings of the 39th International Conference on Machine Learning, Mar 2022
    Also appeared in AAAI-2022 Workshop on Adversarial Machine Learning and Beyond

2021

  1. Adversarial Examples for k-Nearest Neighbor Classifiers Based on Higher-Order Voronoi Diagrams
    Chawin Sitawarin, Evgenios M Kornaropoulos, Dawn Song, and David Wagner
    In Advances in Neural Information Processing Systems, Mar 2021
  2. Improving the Accuracy-Robustness Trade-off for Dual-Domain Adversarial Training
    Chawin Sitawarin, Arvind P Sridhar, and David Wagner
    In Workshop on Uncertainty and Robustness in Deep Learning, Jul 2021
  3. SAT: Improving Adversarial Training via Curriculum-Based Loss Smoothing
    Chawin Sitawarin, Supriyo Chakraborty, and David Wagner
    In Proceedings of the 14th ACM Workshop on Artificial Intelligence and Security, Virtual Event, Republic of Korea, Jul 2021
  4. Mitigating Adversarial Training Instability with Batch Normalization
    Arvind P Sridhar, Chawin Sitawarin, and David Wagner
    In Security and Safety in Machine Learning Systems Workshop, May 2021

2020

  1. DLS
    minnorm_thumbnail.png
    Minimum-Norm Adversarial Examples on KNN and KNN Based Models
    Chawin Sitawarin, and David Wagner
    In 2020 IEEE Security and Privacy Workshops (SPW), May 2020

2019

  1. Analyzing the Robustness of Open-World Machine Learning
    Vikash Sehwag, Arjun Nitin Bhagoji, Liwei Song, Chawin Sitawarin, Daniel Cullina, Mung Chiang, and Prateek Mittal
    In Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security, May 2019
  2. Defending against Adversarial Examples with K-Nearest Neighbor
    Chawin Sitawarin, and David Wagner
    arXiv:1906.09525 [cs], Jun 2019
  3. DLS
    deepknn_thumbnail.png
    On the Robustness of Deep K-Nearest Neighbors
    Chawin Sitawarin, and David Wagner
    In 2019 IEEE Security and Privacy Workshops (SPW), May 2019

2018

  1. Enhancing Robustness of Machine Learning Systems via Data Transformations
    Arjun Nitin Bhagoji, Daniel Cullina, Chawin Sitawarin, and Prateek Mittal
    In 52nd Annual Conference on Information Sciences and Systems (CISS), May 2018
  2. CCS
    Not All Pixels Are Born Equal: An Analysis of Evasion Attacks under Locality Constraints
    Vikash Sehwag, Chawin Sitawarin, Arjun Nitin Bhagoji, Arsalan Mosenia, Mung Chiang, and Prateek Mittal
    In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Oct 2018
  3. DARTS: Deceiving Autonomous Cars with Toxic Signs
    Chawin Sitawarin, Arjun Nitin Bhagoji, Arsalan Mosenia, Mung Chiang, and Prateek Mittal
    arXiv:1802.06430 [cs], May 2018
  4. Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion (Invited)
    Chawin Sitawarin, Weiliang Jin, Zin Lin, and Alejandro W. Rodriguez
    Photon. Res., May 2018
  5. DLS
    Rogue Signs: Deceiving Traffic Sign Recognition with Malicious Ads and Logos
    Chawin Sitawarin, Arjun Nitin Bhagoji, Arsalan Mosenia, Prateek Mittal, and Mung Chiang
    arXiv:1801.02780 [cs], Mar 2018

2017

  1. Beyond Grand Theft Auto v for Training, Testing and Enhancing Deep Learning in Self Driving Cars
    Mark Anthony Martinez, Chawin Sitawarin, Kevin Finch, Lennart Meincke, Alexander Yablonski, and Alain Kornhauser
    arXiv:1712.01397 [cs], Dec 2017

2016

  1. Inverse-Designed Nonlinear Nanophotonic Structures: Enhanced Frequency Conversion at the Nano Scale
    Zin Lin, Chawin Sitawarin, Marko Loncar, and Alejandro W. Rodriguez
    In 2016 Conference on Lasers and Electro-Optics, CLEO 2016, Dec 2016