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Adversarial Examples

Attacks on machine learning models are becoming real concerns

Adversarial examples: small perturbation on inputs to mislead a
classifier into making a wrong prediction

Generated by solving an optimization problem:

xadv = x + δ∗ where δ∗ = argmax
δ:∥δ∥∞≤ϵ

ℓ(x + δ; θ) (1)
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Defenses against Adversarial Examples

Adversarial Training [Madry et al., 2018] is a popular and effective
method for training robust networks against adversarial examples.

argmin
θ

1

n

n∑
i=1

ℓϵ(xi ; θ) (2)

where ℓϵ(x ; θ) := max
δ:∥δ∥∞≤ϵ

ℓ(x + δ; θ) (3)

We call ℓ(x ; θ) normal loss and ℓϵ(x ; θ) adversarial loss.

Chawin Sitawarin SAT: Smooth Adversarial Training AISec 2021 3 / 24



Problems with Adversarial Training

Our work attempts to address the following problems:

Large drop on clean accuracy

Stuck in “poor” local minima, learn a trivial classifier

Large adversarial generalization gap
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Outline

Brief introduction to curriculum learning

Adversarial training + curriculum learning

H-SAT

P-SAT

Results
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Curriculum Learning: An Introduction

Curriculum Learning [Bengio et al., 2009] is an idea borrowed from
Numerical Continuation Methods [Allgower and Georg, 1990] to solve
non-convex problems

Bad: Solve the non-convex problem directly → get stuck in poor local
optima

Ref: www.cs.ubc.ca/labs/lci/mlrg/slides/non_convex_optimization.pdf
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Curriculum Learning: An Introduction

Good: “Start easy”

1 Solve a smooth version
of the problem

2 Move closer to global
optima

3 Update the smooth
version to be more
similar to the real one

4 Repeat 1-3
5 Stop when the smooth

version is equivalent to
the real one

Ref: Wang et al. [2020]

Increase likelihood of reaching global optima
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Curriculum Learning: An Introduction

For deep learning, this means “train on easy samples first then slowly
include harder ones”

In adversarial settings, easy = clean samples or weak adversary, and
hard = strong adversary

Determining notion of difficulty is a crucial part

Previous works have considered multiple notion of difficulty (e.g., ϵ,
adversarial loss, number of PGD steps)

We propose two new difficulty metrics based on the Hessian matrix
and the softmax probability
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Our Contributions

Large drop on clean accuracy → Train on easy (i.e. clean) samples

Stuck in “poor” local minima, learn a trivial classifier

Large adversarial generalization gap
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Large generalization gap

Flat (or smooth) local minima are believed to generalize better than
sharp (or non-smooth) minima.

Curriculum learning can lead smoother loss landscapes

He et al. [2019]
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Our Contributions

Large drop on clean accuracy → Train on easy (i.e. clean) samples

Stuck in “poor” local minima, learn a trivial classifier → Smoothness

Large generalization gap → Smoothness
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Curriculum Learning + Adversarial Training

Previous works proposed different forms of curriculum learning.

We unify all of them under one general formulation: curriculum
constraint and curriculum loss ℓψ,ϵ:

ℓψ,ϵ(x , λ) = max
δ:∥δ∥∞≤ϵ

ℓ(x + δ) (4)

s.t. ψ(x + δ) ≤ λ

where ψ : Rd → R is a given difficulty metric.

In general, we try to have ψ(x) ∈ [0, 1]. when λ = 1, it reduces to
original adversarial loss.

We can start training with λ = 0 or some small λ (easy) and
gradually increase it to 1 (hard).
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Our Approaches

Question: How to design the difficulty metric?

H-SAT: Hessian-based Smooth Adversarial Training

P-SAT: Probability-based Smooth Adversarial Training
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H-SAT: Hessian-based Smooth Adversarial Training

Can we directly encourage smoothness through the difficulty metric?

Liu et al. [2020] shows that larger ϵ (more difficult) leads to less
smoothness through Lipschitz-type bound

Make sure that adversarial training generates adversarial examples
that result in smooth loss landscapes locally w.r.t. θ

We follow Liu et al.’s notion of local smoothness:

Definition 1: Local Smoothness of Adversarial Loss

The largest eigenvalue of the Hessian evaluated at the adversarial example
(“maximal Hessian eigenvalue” in short): ∥Hϵ(x ; θ)∥(2).

Hϵ(x ; θ) := ∇2
θℓ(x

adv ; θ) for xadv ∈ argmax
z:∥z−x∥p≤ϵ

ℓ(z ; θ) (5)
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H-SAT: Hessian-based Smooth Adversarial Training
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H-SAT’s difficulty metric:

ψH(x) ≈ ∥Hϵ(x ; θ)∥(2) (7)

However, it is computationally expensive which leads to multiple
approximation and performs slightly worse than P-SAT
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P-SAT: Probability-Based Smooth Adversarial Training

We propose Probability-Based Smooth Adversarial Training
(P-SAT) with “softmax probability gap” as the difficulty metric:

ψP(x) := max
j ̸=y

f (x)j − f (x)y (8)

where y ∈ {1, ..., c} is the ground-truth label of x , and f : Rd → Rc

is the softmax output of a neural network.

Has stronger connection to notion of difficulty than H-SAT: large
ψP(x) = wrong prediction with high confidence

Connection to smoothness in logistic regression

No computational overhead

We use early stopping to satisfy this constraint when generating
adversarial examples.
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Empirical Results

Table: Clean and adversarial accuracy (AutoAttack) of the defenses on MNIST.
The numbers in red indicate that the network is stuck in a sub-optimal local
minimum.

Defenses
ϵ = 0.3 ϵ = 0.45

Clean Adv Clean Adv

Madry et al. [2018] 98.07 85.47 11.22 11.22
Zhang et al. [2019] 98.98 90.70 97.36 0.00
Wang et al. [2019] 98.93 92.24 97.98 65.71
Cheng et al. [2020] 99.46 0.00 99.39 0.00

H-SAT (ours) 99.01 80.71 98.35 54.10
P-SAT (ours) 99.16 92.00 97.87 58.50

Only Wang et al. [2019] and ours do not learn trivial classifiers.
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Table: Clean and adversarial accuracy on Imagenette dataset.

Defenses
ϵ = 16/255 ϵ = 24/255

Clean Adv Clean Adv

Madry et al. [2018] 49.10 28.00 42.55 21.05
Zhang et al. [2019] 78.05 8.90 68.50 1.90
Wang et al. [2019] 66.20 30.30 52.50 24.50

H-SAT (ours) 69.10 35.45 47.50 27.75
P-SAT (ours) 72.20 31.25 62.15 20.00

Stabilize adversarial training, especially on non-ResNet models

Minor but consistent improvement over previous works on CIFAR-10
and CIFAR-100

2-5 percentage points improvement on clean accuracy over Madry
et al. [2018], or 1-2 for adversarial accuracy

Larger improvement on Imagenette and larger ϵ
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Loss Landscapes

Madry et al. [2018] H-SAT (ours) P-SAT (ours)
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Summary

In summary, we...

Propose a general formulation of curriculum-based adversarial
training.

Propose H-SAT and P-SAT which aim at improving smoothness of
adversarial training and solving its drawbacks.

Empirically confirm our intuitions and trains neural networks with
higher robustness and clean accuracy compared to the baselines on
various datasets.
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Thank You!
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