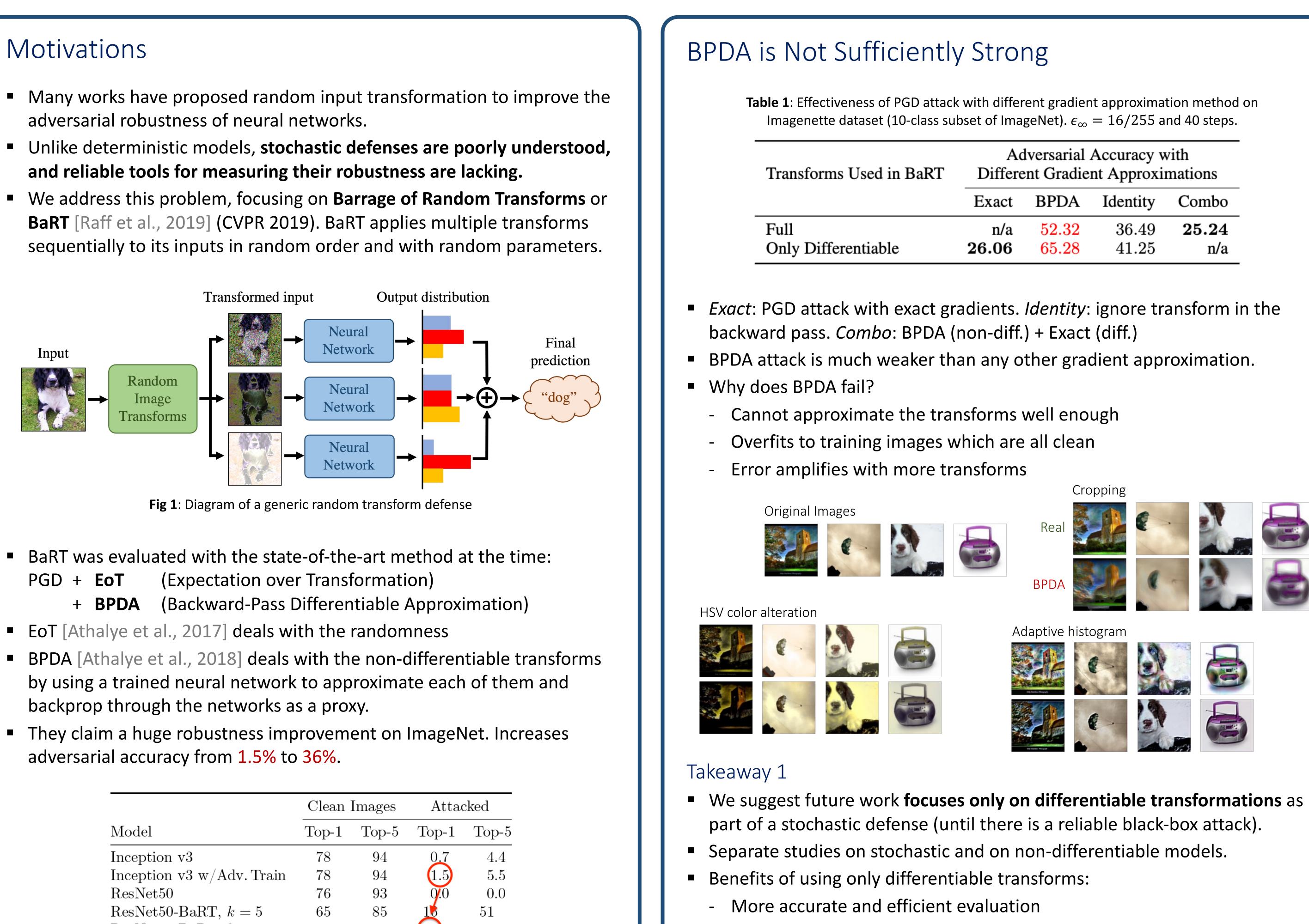
ICML | 2022

Thirty-ninth International Conference on Machine Learning

Motivations

- adversarial robustness of neural networks.



- EoT [Athalye et al., 2017] deals with the randomness

	Clean Images		Attacked	
Model	Top-1	Top-5	Top-1	Top-5
Inception v3	78	94	0.7	4.4
Inception v3 w/Adv. Train	78	94	(1.5)	5.5
${ m ResNet50}$	76	93	0.0	0.0
ResNet50-BaRT, $k = 5$	65	85	10	51
ResNet50-BaRT, $k = 10$	65	85	36	57

Demystifying the Adversarial Robustness of Random Transformation Defenses

Chawin Sitawarin (chawins@berkeley.edu)

- Compatible with adversarial training

Zachary Golan-Strieb David Wagner

DA	Identity	Combo
32	36.49	25.24
28	41.25	n/a

Stronger Attack on (Differentiable) Random Transform Defense

- Attack on Random Transform Defense = SGD.
- - Variance reduction
 - Signed gradients and momentum
- Improved transferability with SGM [Wu et al., 2020]
- Linear loss on logits
- AggMo optimizer (acceleration & less tuning) [Lucas et al., 2019]

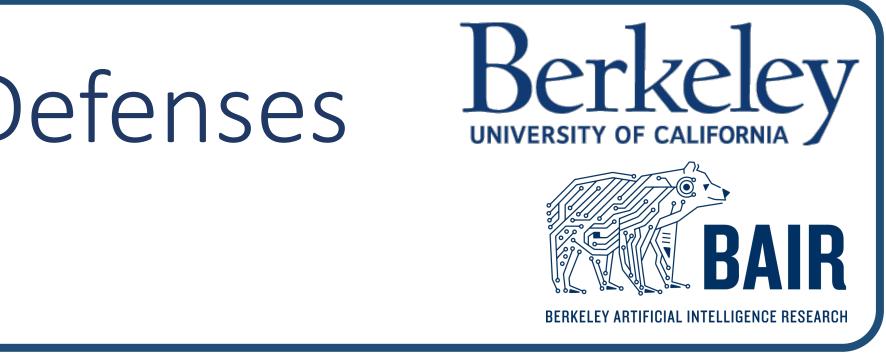
Table 2: Attack comparison on Random Transform defense. AutoAttack uses standard version combined with EoT. For Imagenette, $\epsilon = 16/255$, and for CIFAR-10, $\epsilon = 8/255$.

Attacks	Accuracy		
	CIFAR-10]	
No attack	81.12 ± 0.54	89	
Baseline	33.83 ± 0.44	70	
AutoAttack	61.13 ± 0.85	85	
Our attack	29.91 ± 0.35	6.	

Defenses	Clean Ac
Normal model	
Madry et al. (2018)	
Zhang et al. (2019)	
RT defense	89.04
AdvRT defense	88.83

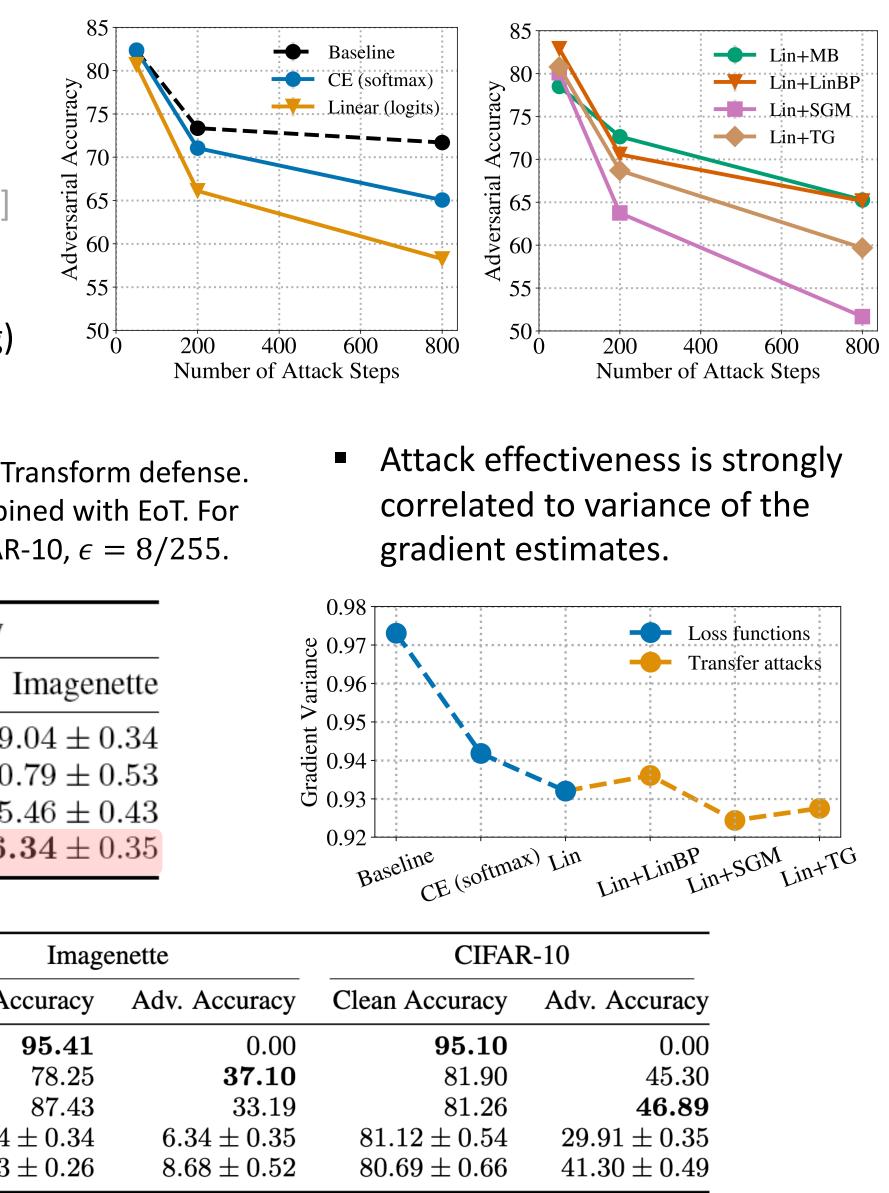
Takeaway 2

- Randomness makes attacks a lot less efficient.



Even with differentiable transforms alone, current attack is sub-optimal. Requires thousands of steps but does not converge to good local optima.

Our attack combines baseline (PGD+EoT) with multiple techniques:



For better attacks, try (1) reducing variance of the gradients, (2) using accelerated methods, (3) running the attack with lots of steps.

• Combining the defense with adversarial training helps but is *not as good as* adversarial training on normal deterministic neural networks.