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Summary
1. Image preprocessors (e.g., resize, compress) in a typical 

computer vision API was not commonly studied in the literature, 
but they can hinder query-based hard-label attacks.

2. We create preprocessor-aware attacks that “bypass” the known 
preprocessors and outperform the unaware attackers.

3. We propose an extraction attack for finding out which 
preprocessors are used in the API pipeline.

Traditional Setup in the Attack Literature

In practice, there are likely multiple preprocessors in the pipeline.

§ Preprocessors can make decision-based attacks less effective.
§ Some perturbations do not affect the prediction because of the 

invariance of the preprocessors. Hence, the adversary gains less 
information from each query than they would have w/o preprocessors.

Preprocessor-Aware Query-Based Attack Preprocessor Extraction Attack

Experiments on ResNet-18 (ImageNet)

§ Preprocessor-aware attacks are much more 
effective (up to 7x) than the unaware.

§ More invariance = more improvement.
§ (Bonus) Attack hyperparameters matter a lot. 

We swept ~5 settings and reported the best.

Experiments on Hugging Face Models
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1 Bypassing Attack
• Very simple! But only works for some preprocessors like cropping and resizing.
• Just run any off-the-shelf attack on the processed image and reverse the final perturbation.

2 Biased-Gradients Attack
• Works for any preprocessor including non-differentiable ones like quantization and JPEG.
• Slightly modify gradient estimation step of off-the-shelf attacks.
• Similar to Bypassing Attack, but also backprop through the preprocessor. 
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Knowing which preprocessor is
used, can we exploit invariance

of the preprocessor?

1. Guess the preprocessor 
�̃� (vs. real 𝑡∗) and apply 
to some carefully 
chosen inputs (𝑥", 𝑥!).

2. Check by feeding them 
to the target pipeline.

§ Main idea: guess and check!
§ This attack can be run only once and then used for 

finding all subsequent adversarial inputs!

Assumption: Preprocessor is idempotent.
If �̃� = 𝑡∗, 𝑓 𝑡∗(�̃� 𝑥 ) = 𝑓 𝑡∗(𝑥) = 𝑦 (guaranteeed).
If �̃� ≠ 𝑡∗,𝑓 𝑡∗(�̃� 𝑥 ) ≠ 𝑦 (not guaranteeed).

§ If our guess is right, prediction stays the same. 
§ Otherwise, it will likely change.

3.  Repeat 1. and 2. with multiple input pairs until we’re
      sufficiently confident.

§ The number of attack queries depends on the set of 
all possible preprocessors. 

§ Usually extracting 1 preprocessor uses fewer queries 
than finding 1 adversarial example.


