
Preprocessors Matter!
Realistic Decision-Based Attacks on Machine Learning Systems

Chawin Sitawarin¹ Florian Tramèr2 Nicholas Carlini3
¹UC Berkeley 2ETH Zürich 3Google

Summary
1. Image preprocessors (e.g., resize, compress) in a typical

computer vision API was not commonly studied in the literature,
but they can hinder query-based hard-label attacks.

2. We create preprocessor-aware attacks that “bypass” the known
preprocessors and outperform the unaware attackers.

3. We propose an extraction attack for finding out which
preprocessors are used in the API pipeline.

Traditional Setup in the Attack Literature

In practice, there are likely multiple preprocessors in the pipeline.

§ Preprocessors can make decision-based attacks less effective.
§ Some perturbations do not affect the prediction because of the

invariance of the preprocessors. Hence, the adversary gains less
information from each query than they would have w/o preprocessors.

Preprocessor-Aware Query-Based Attack Preprocessor Extraction Attack

Experiments on ResNet-18 (ImageNet)

§ Preprocessor-aware attacks are much more
effective (up to 7x) than the unaware.

§ More invariance = more improvement.
§ (Bonus) Attack hyperparameters matter a lot.

We swept ~5 settings and reported the best.

Experiments on Hugging Face Models

𝑥! 𝑥"

Decision Boundary 𝑓 ∘ 𝑡
∗

�̃�(𝑥!) �̃�(𝑥")

Wrong
guess #1

�̃�(𝑥!)

�̃�(𝑥")
Wrong
guess #2

1 Bypassing Attack
• Very simple! But only works for some preprocessors like cropping and resizing.
• Just run any off-the-shelf attack on the processed image and reverse the final perturbation.

2 Biased-Gradients Attack
• Works for any preprocessor including non-differentiable ones like quantization and JPEG.
• Slightly modify gradient estimation step of off-the-shelf attacks.
• Similar to Bypassing Attack, but also backprop through the preprocessor.

256 ✕ 256 224 ✕ 224Center Crop

Knowing which preprocessor is
used, can we exploit invariance

of the preprocessor?

1. Guess the preprocessor
�̃� (vs. real 𝑡∗) and apply
to some carefully
chosen inputs (𝑥", 𝑥!).

2. Check by feeding them
to the target pipeline.

§ Main idea: guess and check!
§ This attack can be run only once and then used for

finding all subsequent adversarial inputs!

Assumption: Preprocessor is idempotent.
If �̃� = 𝑡∗, 𝑓 𝑡∗(�̃� 𝑥) = 𝑓 𝑡∗(𝑥) = 𝑦 (guaranteeed).
If �̃� ≠ 𝑡∗,𝑓 𝑡∗(�̃� 𝑥) ≠ 𝑦 (not guaranteeed).

§ If our guess is right, prediction stays the same.
§ Otherwise, it will likely change.

3. Repeat 1. and 2. with multiple input pairs until we’re
 sufficiently confident.

§ The number of attack queries depends on the set of
all possible preprocessors.

§ Usually extracting 1 preprocessor uses fewer queries
than finding 1 adversarial example.

