

- but they can hinder query-based hard-label attacks.
- preprocessors and outperform the unaware attackers.
- We propose an **extraction attack** for finding out which preprocessors are used in the API pipeline.

Traditional Setup in the Attack Literature

In practice, there are likely multiple preprocessors in the pipeline.

- Preprocessors can make decision-based attacks less effective.
- Some perturbations do not affect the prediction because of the

Knowing which preprocessor is used, can we exploit *invariance* of the preprocessor?

Preprocessors Matter! Realistic Decision-Based Attacks on Machine Learning Systems

Chawin Sitawarin¹ Florian Tramèr² Nicholas Carlini³

¹UC Berkeley ²ETH Zürich ³Google

Table 2: Comparison of the mean adversarial perturbation norm (\downarrow) found by our Biased-Gradient Attacks vs the preprocessor-unaware and the SNS counterparts.

Preprocess	Methods	Untg.	Targeted	
		HSJA	HSJA	QEBA
$\begin{array}{c} \text{Crop} \\ (256 \rightarrow 224) \end{array}$	Unaware	4.2	38.2	22.2
	SNS	3.7	35.4	31.5
	Biased-Grad (ours)	3.7	33.1	19.6
Resize	Unaware	16.5	153.4	90.5
$(1024 \rightarrow 224)$	SNS	3.9	112.6	32.2
(Nearest)	Biased-Grad (ours)	3.7	23.5	19.4
Quantize (4 bits)	Unaware	9.7	63.7	56.4
	SNS	6.4	55.9	57.2
	Biased-Grad (ours)	3.1	39.3	28.8
JPEG (quality 60)	Unaware	9.2	63.2	52.7
	SNS	2.7	44.5	44.6
	Biased-Grad (ours)	1.5	25.1	21.0
Neural Compress	Unaware	25.1	92.0	78.6
(Ballé et al., 2018)	SNS	17.6	83.6	78.9
(hyperprior, 8)	Biased-Grad (ours)	15.8	75.2	75.8
Neural Compress (Cheng et al., 2020b) (attention, 6)	Unaware	33.8	94.1	86.9
	SNS	14.3	80.3	75.5
	Biased-Grad (ours)	12.6	74.8	77.9

Preprocessor Extraction Attack

Experiments on Hugging Face Models

Table 4: Number of queries (mean \pm standard deviation) necessary to determine what preprocessor is being used.

Preprocessor Space	Num. Queries
Arbitrary resize (200px-800px)	632 ± 543
Arbitrary center crop (0%-100%)	52.0 ± 1.3
Arbitrary JPEG compression (quality 50-100)	70.0 ± 22.8
Typical resize (see text)	48.7 ± 6.8

ETH zürich

Main idea: guess and check! This attack can be run only once and then used for finding all subsequent adversarial inputs!

If our guess is right, prediction stays the same. Otherwise, it will likely change.

Assumption: Preprocessor is *idempotent*. If $\tilde{t} = t^*$, $f(t^*(\tilde{t}(x))) = f(t^*(x)) = y$ (guaranteeed). If $\tilde{t} \neq t^*$, $f(t^*(\tilde{t}(x))) \neq y$ (not guaranteeed).

3. Repeat 1. and 2. with multiple input pairs until we're sufficiently confident.

The number of attack queries depends on the set of all possible preprocessors.

Usually extracting 1 preprocessor uses fewer queries than finding 1 adversarial example.