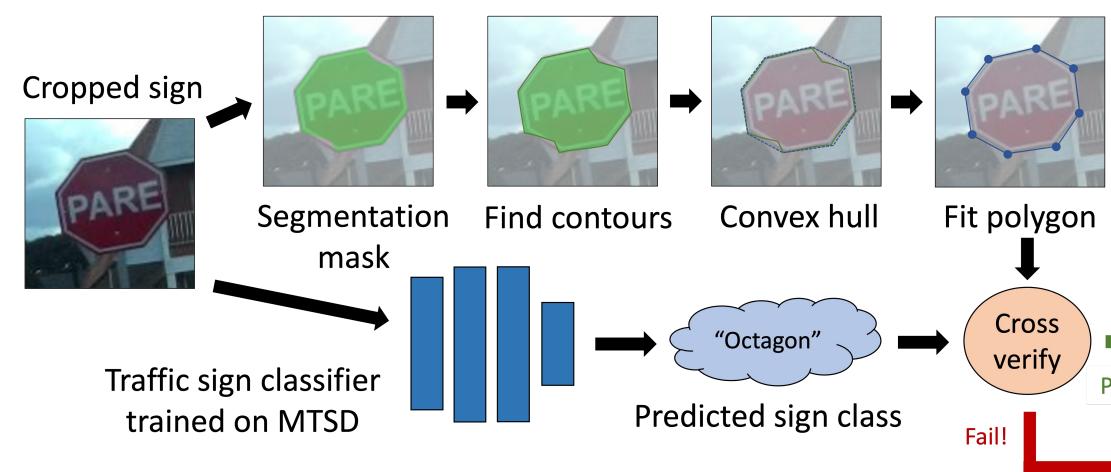

Summary

- 1. We propose REAP, a realistic and large-scale benchmark for adversarial patches.
- 2. Realistic: comes with annotated 3D geometric and brightness-contrast transformations.
- 3. Large-scale: 14K samples over 10K images of driving scenes from Mapillary Vistas dataset.


Evaluation in Past Literature

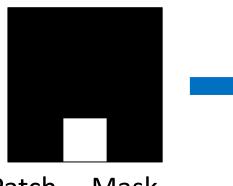
More realistic but small and not diverse

Geometric Transform

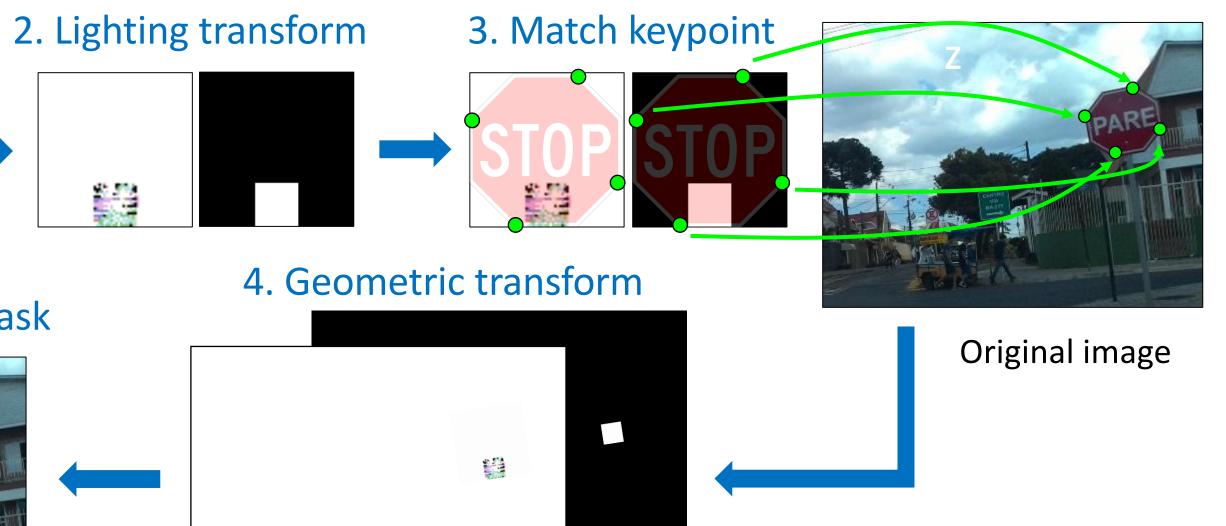
REAP: A Large-Scale Realistic Adversarial Patch Benchmark

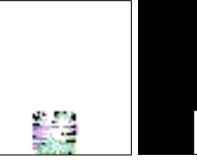
¹UC Berkeley ²Microsoft Research

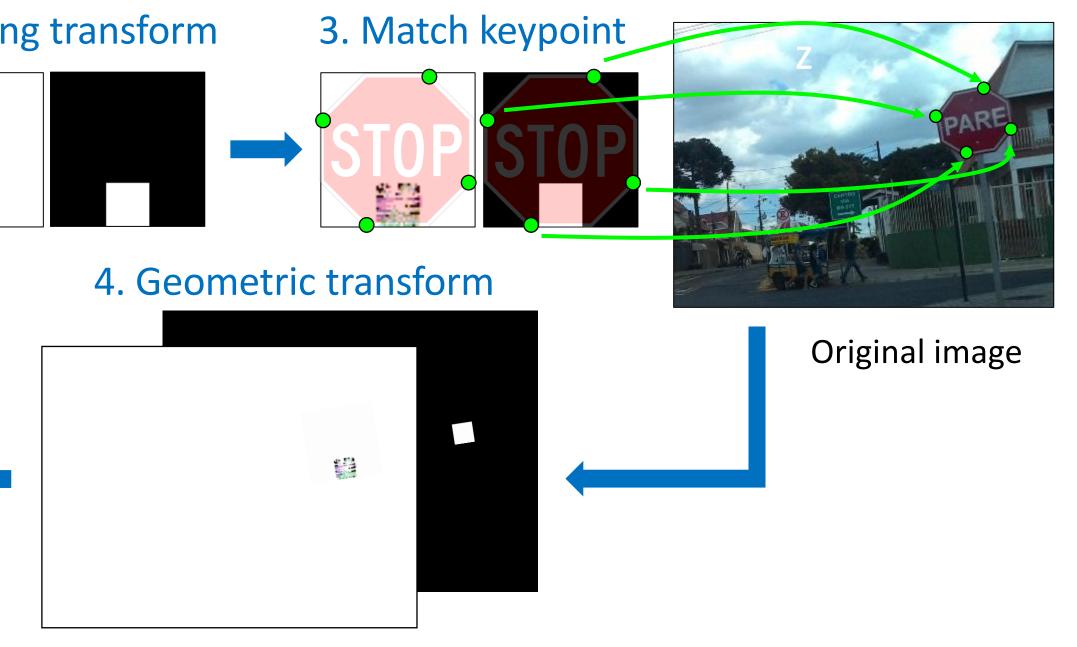
Samples From REAP Benchmark



Effects of the Transforms


Adversarial Patch Rendering


- 1. Canonical form

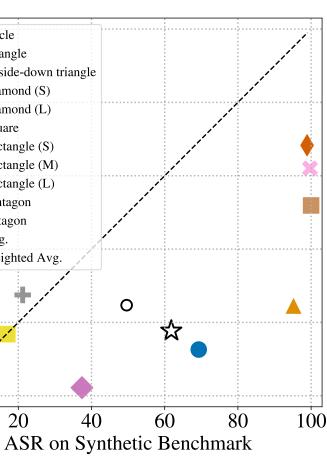


- Adversarial Patch Mask
- 5. Apply patch using mask

Nabeel Hingun¹ Chawin Sitawarin¹ Jerry Li² David Wagner¹

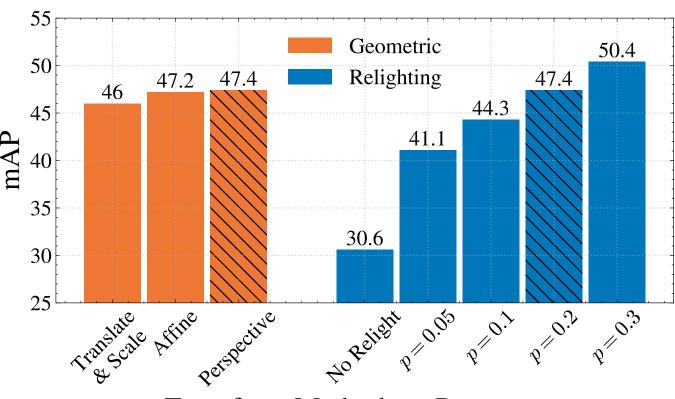
Realism Test

Resu	J
	Pa
	No Sn Mo La
	Pa
	No Sn Mo La
Small	
100 00 40 00 40 00 0 0 0 0 0 0 0 0 0 0 0	Circle Triangl Upside Diamo Square Rectan Rectan Rectan Pentag Octago Avg. Weight
Lighting to achi	
Attacks No Attack Per-Class Per-Instan Transfer f Transfer f	Att ice from from
Transfer f	1011



Its From REAP Benchmark

FRC	CNN	YOI	LOF	DIN	10
FNR	mAP	FNR	mAP	FNR	mAP
4.3	72.9	18.5	54.8	14.1	68.2
15.4	59.4	33.7	43.5	32.0	60.4
22.4	46.5	42.7	36.6	35.4	52.6
50.0	18.2	72.8	19.4	62.8	39.5
Adv. FRCNN		Adv. YOLOF		Adv. DINO	
FNR	mAP	FNR	mAP	FNR	mAP
3.1	73.3	21.0	55.0	9.4	74.2
3.8	71.8	22.5	54.7	1.8	80.6
6.1	66.8	27.1	51.9	1.2	80.1
13.9	56.3	57.7	34.1	3.6	77.8
	FNR 4.3 15.4 22.4 50.0 Adv. 1 FNR 3.1 3.8 6.1	4.3 72.9 15.4 59.4 22.4 46.5 50.0 18.2 Adv. FRCNN FNR mAP 3.1 73.3 3.8 71.8 6.1 66.8	FNR mAP FNR 4.3 72.9 18.5 15.4 59.4 33.7 22.4 46.5 42.7 50.0 18.2 72.8 Adv. FRCNN Adv. FNR mAP FNR 3.1 73.3 21.0 3.8 71.8 22.5 6.1 66.8 27.1	$\begin{tabular}{ c c c c c } \hline FNR & mAP & \hline FNR & mAP \\ \hline 4.3 & 72.9 & 18.5 & 54.8 \\ 15.4 & 59.4 & 33.7 & 43.5 \\ 22.4 & 46.5 & 42.7 & 36.6 \\ 50.0 & 18.2 & 72.8 & 19.4 \\ \hline \\ $	$\begin{array}{ c c c c c }\hline FNR & mAP & FNR & mAP & FNR \\ \hline 4.3 & 72.9 & 18.5 & 54.8 & 14.1 \\ 15.4 & 59.4 & 33.7 & 43.5 & 32.0 \\ 22.4 & 46.5 & 42.7 & 36.6 & 35.4 \\ 50.0 & 18.2 & 72.8 & 19.4 & 62.8 \\ \hline \hline \\ \hline $


Medium

transform is important **>** e a faithful benchmark.

ASR (\uparrow)	$mAP(\downarrow)$		
n/a	65.7		
0.1	75.1		
2.7	63.7		
0.1	76.5		
0.2	76.1		
0.0	79.6		
0.4	72.7		
	n/a 0.1 2.7 0.1 0.2 0.0		

✓ Naïve synthetic benchmark overestimates attack success rate of the patches for all classes of the signs and for all patch sizes.

Transform Methods or Parameters

- Adversarial training seems very effective at stopping universal attacks.
- But it seems to also overfit to the attack, but no evidence of gradient obfuscation.